Simple Artificial Textures

2D and 3D textures the "easy" way

This article is an  introduction  to  the  method of texturing objects (usually 3D objects) that is  most  commonly used in computer graphics today. Although its principles  are  very  simple,  it  can be used to create a wide range of textures  such  as  marble, water and clouds. A good example is the Persistence of Vision (PoV) Raytrace package which uses these algorithms, or even some  of the ground-breaking films from Hollywood. Remember the  funny  water-creature  in  "The  Abyss" ? The water textures for it were creating with these very same techniques.

Basic Principle

The basic thing we need is  a  mathematical function that looks random but varies smoothly from point to  point,  can repeat itself or go one indefinitely.

The original idea for artificial  textures  came  from the creation of fractals and fractal landscapes, where  a  surface  is divided up intotriangles  with  random  heights,   then   subdivided  again  to  give increasing levels of  detail  (see  the  game  "Midwinter"  for a good example of these techniques.)

However, a technique was  needed  for  3D  rendering  which required a seemingly random value, which  varied  slightly in neighbouring points to give an impression of texture,  but  not  too much texture. We will then use this "random" value to  create textures later on. The creator of this technique called  such  a  function  the  "Noise" function. In mathematical language we get:

noise(x,y,z) --> [a real number]

The Noise Function

The way to create the Noise Function is to split up any 2D or 3D space into a grid and assign various values  to  a series of all points at a certain interval. Let's take  2D  space  as  a starting point, because that is easier to represent on screen. The x-values are the horizontal scale, the y-values the vertical:-

     :  :  :  :  :  :
     :  :  :  :  :  :
     :  :  :  :  :  :
     :  :  :  :  :  :
     :  :  :  :  :  :

Now we assume that our texture will  never  be more than 5x5 units. If it is, the texture will  "wrap  round"  and  start again. Now for each point on this lattice we  have  created,  we  will  create and store 3 random values: an x-gradient, a  y-gradient  and  a "height" value. In fact this height value is only to help us to visualise this concept: it isn't really a height at all.

If we imagine a flat landscape, where at the corner of each square one value is a "height" we can see that for  any value of x or y not lying on these vertices, by  using  a  bit  of  maths  we can create another "height" value from the values of the  4 corners. But how do we create the in-between values?

1. Linear Interpolation

One way is to simply  draw  a  straight  lines between the corners (so called "linear interpolation"  -  "interpolation"  as  in  finding the point in-between, "linear" as in using straight lines.)

Let us look at point (0.5,0.5)  from  above our "landscape" and assume that the values are as follows:

(0,0)     (1,0)
    2-----4----- ---...
    :     :     :
    :  X  :     :    X marks the spot we want
    :     :     :
    6-----8----- ---...
(0,1)     (1,1)
This is where the x- and  y-  gradient values mentioned above come in. First we interpolate the x values.  Since  we are taking x=0.5 we only need to find the halfway point between them: first from 2 to 4, giving 3; then from 6 to 8, giving 7. Then we find the halfway point in the y direction. Halfway from 3 to 7  gives  5. Hence at (0.5,0.5) the value is 5.

Simple enough, but if we apply  this  to  textures, it gives a curious "straight line" appearance that isn't  very satisfactory. What we need is a smoother way of creating in-between values...

2. Polynomial Interpolation

Now, don't panic... this is a  lot  easier  than it sounds... in fact, I've done all the maths for you in this article.

If you read  the  above  text  again,  you  will  notice  that  when I described each point on  the  lattice  structure,  I mentioned *three* values rather than the one we have  used  above. This is to describe a curve between lattice points rather  than  a straight line. Let's look at the  interpolation  along  the  x-lattices  again.  Imagine  we are looking at the landscape  again,  but  this  time  from  the side. The
"heights" now look like this:

            ?         :      ^
  2         :         :      :
  :         :         :      :Height axis
(0,0)    (0.5,0)    (1,0)    :
--+---------+---------+-----> X axis
To give a smoother interpolation,  we  give  each point an x-gradient, that is how steep the  "slope"  at  this  point  is. Let's say that at (0,0) this is 0 (ie flat) but at (1,0) this is 1 (ie at an angle of 45 degrees)

Now I said that I've done all the maths for you. If v0 and v1 are the heights  at  0  and 1 respectively, and g0 and g1 are the gradients then we need an equation which describes this curve. Not only  this,  but  to  get  a  genuinely  smooth  translation,  the "gradient of the gradient" ie. how  the  gradient is changing from one
point to the next, must be 0 at both points.

This assumed, then the equation to define this curve is:

             new_height = (-2*v1 + 2*v0 + g0 + g1 ) * x*x*x
                        +  (-2*g0 - g1 - 3*v0 + 3*v1) * x*x
                        +  (g0) * x
                        +  (v0)

We also need to interpolate the gradients between these points:

           new_gradient = 3 * (-2*v1 + 2*v0 + g0 + g1 ) * x*x
                        +  2 * (-2*g0 - g1 - 3*v0 + 3*v1) * x
                        +  (g0)

Now all we need to do is  interpolate the new heights and gradients at (0.5,0) and (0.5,1), then do this again to give the value at (0.5,0.5) Voila! the noise function is complete.

The Turbulence Function

Alternatively, we can use the  results  of  the Noise function in more complicated ways (what do you mean, "even"  more?) You can make a very realistic  marble  effect  by  making  what  is  called  a  Turbulence function. In pseudocode, the  basic  algorithm  for  this is something like:

function (x,y,z) : real
turbulence = 0                  { set to zero to start }
scale = 1

while (scale > some_size)       { some_size is how far we want to go }
 turbulence = turbulence +  (abs (Noise (x/scale,y/scale,z/scale) * scale ))
 scale = scale / 2

return turbulence
end function

The function repeatedly "zooms" the Noise function, but the bigger the scale the less notice is taken  of  the  result.  Also if the value of "Noise" allows negative results,  the  use  of  "abs"  here will cause discontinuities which give effects  such  as  ridges  or  veins in the textures.

So how is this useful?

Firstly, you  can  use  this  technique  to  create  some  very pretty patterns. If we simply limit the  height  values  to between 0 and say 15, then we use  the  result  as  a  colour  value  to create a smooth texture - good for  colour-cycling  effects,  too! Alternatively, many overlaid Noise functions give  realistic  impressions of lapping water (which you could even animate)

In addition, you can extend this method  to cover 3 dimensions, as POV or NeoN-3D do. This is extremely hairy  to code in something like STOS though, and the "height" analogy I used  to explain the 2D method will fall down. However, converting it  to  3D  gives  you  the idea of the "solid" texture for objects made of wood, stone etc.

If you have 3D,  then  the  Noise  can  make  surface ripples for bump mapping or texture mapping, some  of  the sexiest techniques around in graphics at the moment (especially on an ST!)

Using the Turbulence  function  gives  a  "mottled"  look suitable for marble, other water effects or  even  cloud  formations, the choice is yours. More detailed examples (using a kind of bastardized C code) are available in the original paper by Perlin (see the bibliography)


Hopefully you will have some  idea  of  how  the textures in the above packages work now, and with  a  bit  of  practice can create your own. Problems with getting it to work can be sent to:

tattersall atsymbol exc ite dot com


1) "An Image Synthesizer" (Perlin) "Computer Graphics" (Proceedings of SIGGraph Volume 19 Number 3, 1985), pages 287-296. Try the Periodicals  section  of  your  local  library under "Computer Graphics." This was in my  University  library,  so if Salford have it most other places will too?

2) "Computer  Graphics:  Principles  and  Practice"  (Foley,  Van Dam, Feiner, Hughes) Addison-Wesley Publishing ISBN 0-201-12110-7. Good all-round reference;  (dodgy)  translations  into other languages are also available. The  German  version  is  rubbish  though: it even misses chapters out

3) "Introduction  to  Computer  Graphics"  (Foley,  Van  Dam,  Feiner, Hughes, Phillips) Addison-Wesley Publishing ISBN 0-201-60921-5. Not as good as (2) on most areas of graphics - but cheaper

4) Any decent A-level book on maths to do the interpolation

Page maintained by Steven Tattersall